A Self-Assembling Peptide with the Potential of Non-Invasive Regeneration of Early Caries Lesions

Lucy Kind1, Alain Wuetrich1, Sabrina Stevanovic1, Uwe Pieles1, Michael Hug2, Dominikus A. Lysek2

1University of Applied Sciences and Arts Northwestern Switzerland (FHNW), lucy.kind@fhnw.ch
2creddentis ag, mhu@creddentis.com

Introduction

Natural remineralization of tooth material in demineralized small subsurface lesions provides a challenging purpose. Currently early dental caries are mainly treated by mechanical techniques, like dental fillings or tooth extraction, or by applying protective barriers to the tooth surface, like varnished, containing e.g. fluoride.

As a result research is concerned with non-invasive regeneration methods of early caries in enamel/white spot lesions. The scientific breakthrough was achieved by applying a self-assembling peptide (SAP) to the cavities. The fully synthetic peptide forms a 3D supramolecular network in situ and is assumed to trigger nucleation of calcium phosphate nanocrystals, resulting in a biomimetic mineralization and therefore a regeneration of demineralized cavities [1].

In this project, the diffusion, assembly and remineralization process of the peptide P11-4 were studied in artificially demineralized cavities of human teeth [2].

Methods

Supramolecular peptide network were detected by transmission electron microscopy (TEM). To stabilize the self-assembled peptide in artificially generated white spot lesions of human teeth, Critical Point Drying (CPD) was performed and subsequently the cavities were visualized by scanning electron microscopy (SEM). Furthermore matrix-assisted laser desorption/ionization (MALDI-TOF) measurement was performed on peptide treated white spot lesions. The remineralization status was detected by micro Computer Tomography (µCT).

General application procedure of self-assembling peptide on white spot lesions of human teeth

1. Carious lesion
2. Washing and pretreatment of the white spot area
3. Application of peptide monomer on the carious lesion area
4. Diffusion of monomeric peptide into the lesion
5. Peptide self-assembling to 3D network in acidic environment
6. Nucleation and growth of hydroxyapatite nanocrystals
7. Remineralization of the carious lesion

Results

TEM pictures represented self-assembled fibrillar protein structures (Figure 1-see above). SEM pictures of the CPD process in artificially drilled deepenings of human teeth showed, that the peptide completely diffused into the enamel cavity. In comparison with a non-peptide treated reference (Figure 2 A), the presence of the organized peptide was visible by a gelled layer covering the artificially drilled deepening (Figure 2 B). Additional experiments with MALDI-TOF showed, that the peptide remained in artificial white spot lesion in a stable and unimpaired state (Figure 3). CT measurements represented a successful remineralization status in vitro in white spot lesions of human teeth according to the test duration (Figure 4).

Conclusion

It was successful shown, that the peptide P11-4 is able to induces biomimetic mineralization and therefore shows a big non-invasive regeneration potential.

Outlook

Further work will be dedicated to the thermodynamic assembly rate by small angle X-ray scattering (SAXS), Raman spectroscopy, Confocal microscopy and enzyme-linked immunosorbent assay.

Acknowledgements

Swiss Nanoscience Institute (SNI) and Swiss National Science Foundation (SNCF) is gratefully acknowledged for supporting the project.

For CT analysis we thank Dr. Hans Deyle from University Basel (BMC).

REFERENCES: