Innovation & Science

Mimicking NatureCUROLOX® TECHNOLOGYScientific NetworkLiterature

Mimicking Nature

credentis provides novel ways to preserve and protect teeth. During odontogenesis a three-dimensional amelogenin matrix allows crystallization and ordered crystal growth of calcium phosphate.

This matrix served as a model for the development of the CUROLOX® TECHNOLOGY. Scientists from the University of Leeds rationally designed a self-assembling peptide formed from naturally occurring amino acids, able to form a biomimic of the matrix.

Additional applications possibilities range from binding of functional substances, such as coloring particles, to the CUROLOX® TECHNOLOGY matrix.

Enamel formation during odontogenisis
P11-4 peptide matrix


CUROLOX® TECHNOLOGY stands for these intelligent matrix-forming protein molecules. The peptide (P11-4) has a high plasticity and affinity to hydroxyapatite: It can form its three-dimensional biomatrix in specific locations and as a matrix exhibits a high affinity for hydroxyapatite.

The plasticity and affinity enable multiple applications.
Within a carious lesion (i.e. tooth decay), the three-dimensional biomatrix serves as a crystallization nucleus for new hydroxyapatite crystals and thus as a template for new enamel.

When the three-dimensional biomatrix is part of a gel, its high affinity to hydroxyapatite (i.e. calcium phosphate) results in the good adhesion to enamel and dentin. Placed on dentin, the resulting protective barrier covers exposed dentinal tubules and provides immediate relief for sensitive teeth.

Within an optimized formulation including additives such as fluoride and calcium phosphate, the biomatrix forms an erosion protection layer on the enamel, shielding the tooth from harmful acids.

Additional applications possibilities range from binding of functional substances, such as coloring particles, to the CUROLOX® TECHNOLOGY matrix.

Predicted binding of calcium ions to CUROLOX® surfaces

Scientific Network

Science is based on strong partnerships. Credentis works with a variety of university and is in constant discussions with leading institutes in Europe and the USA.


More than 20 years of dedicated research! The CUROLOX® TECHNOLOGY has been investigated in depth at various universities. Ranging from mode-of-action in-vitro studies up to gold-standard randomised controlled in-vivo studies. Many aspects of the unique CUROLOX® TECHNOLOGY have been explored- and there is many more to come!

Reference lists for all products with CUROLOX® TECHNOLOGY as well as for products of our license partner vVardis are available as PDF:

Aggeli, Alkilzy, Araujo, Ardu

Aggeli, A., M. Bell, et al. (1997)
«Responsive gels formed by the spontaneous self-assembly of peptides into polymeric beta-sheet tapes.» Nature 386(6622): 259-262.

Aggeli, A., M. Bell, et al. (2003)
«pH as a trigger of peptide beta-sheet self-assembly and reversible switching between nematic and isotropic phases.» J Am Chem Soc 125(32): 9619-9628.

Aggeli, A., N. Boden, et al. (2001)
«Self-assembling peptide systems in biology, medicine, and engineering.» Dordrecht ; Boston, Kluwer Academic Publishers.

Aggeli, A., I. A. Nyrkova, et al. (2001)
«Hierarchical self-assembly of chiral rod-like molecules as a model for peptide beta -sheet tapes, ribbons, fibrils, and fibers.» Proc Natl Acad Sci U S A 98(21): 11857-11862.

Alkilzy, M., Santamaria, R.M. et al., (2018)
«Treatment of Carious Lesions Using Self-Assembling Peptides» Adv Dent Res (2018), Vol. 29(1) 42–47

Alkilzy, M., Splieth, CH., et al (2018)
«Self-assembling Peptide P11-4 and Fluoride for Regenerating Enamel» J Dent Res (2018), 97(2) 148-154

Araujo, I.J. et al. (2019)
«P11-4 self-assembly peptide induces biomineralization without cytotoxicity in MDPC-23 cell line» Pulp Biology and Regeneration Group Satellite Meeting, Portland OR, USA 23-25 June 2019

Ardu, S. et al (2018)
«Protection Against Discolouration by Two Over-the Counter Desensitising Products» Oral Health Prev Dent 16(5) 439-444

Barbosa, Bell, Bommer, Bröseler, Brigi, Brubaker, Brunton

Barbosa-Martins, L. F., (2018)
«Enhancing bond strength on demineralized dentin by pre-treatment with selective remineralising agents.» J Mech Behaviour Beiomedical Materials

Barbosa-Martins, L.F. et al (2018)
«Biomimetic Mineralizing Agents Recover the Micro Tensile Bond Strength of Demineralized Dentin.» Materials  Sep 14;11(9): pii: E1733. doi: 10.3390/ma11091733

Bell, C. J., L. M. Carrick, et al. (2006)
«Self-assembling peptides as injectable lubricants for osteoarthritis.» J Biomed Mater Res A 78(2): 236-246.

Bommer, C. et al (2018)
“Hydroxyapatite and Self-Assembling Peptide Matrix for Non-Oxidizing Tooth Whitening” J Clin Dent 2018;29:57–63

Bröseler, F., Tietmann, C. et al. (2019)
«Randomised clinical trial investigating self assembling peptide P11-4 in the treatment of early caries.» Clin Oral Invest (2019):

Brigi, C. (2014)
«In vitro measurement of dental  remineralisation: investigating a biomimetic self-assembling peptide treatment strategy» Master Thesis, Queen Mary, University of London.

Brubaker, L. et al. (2016)
«Remineralization of Early-Enamel lesions Using Biomimetic Regeneration Combined With Fluoride-toothpaste», AADR Los Angeles

Brunton, P.A., R. P. W. Davies, et al. (2013)
«Treatment of early caries lesions using biomimetic self-assembling-peptides – a clinical safety trial.» Brit Dent J: 215, E6, doi:10.1038/sj.bdj.2013.741.

Brunton P.A.,  R.P.W. Davies et al. (2012)
«Self-assembling peptides to support remineralisation of Tooth lesions – a biomimetic apprach.» ICNARA2, Chile.

Ceci, Chen

Ceci, M. et al (2015)
«Effect of self-assembling peptide P -4 on enamel erosion: AFM and SEM studies» Scanning

Chen X. et al, (2014)
«In vitro Evaluation of Dentine Remineralisation by a Self-Assembling Peptide Using Scanning Electron Microscopy. Abstract 40» Caries Res (48): (2014) 402

Chen X. et al, (2014)
«Dentine Tubule Occlusion of a Novel Self-assembling Peptide Containing Gel» (2014) IADR, Cape Town

Davies, de Sousa, Doberdoli

Davies, R. P. W., A. Aggeli, et al. (2009)
«Mechanisms and Principles of 1D Self-Assembly of Peptides into [beta]-Sheet Tapes.» Advances in Chemical Engineering. J. K. Rudy, Academic Press. Volume 35: 11-43.

Davies, R.P.W. et al (2014)
«Novel Self-Assembling Peptides, for the Treatment of Early Caries Lesions» Caries Res (48): (2014) 404

Davies, R.P.W. et al (2015)
«Treatment of Fabricated Caries Lesions; Self-assembling Peptides vs. Fluoride» Caries Res (49): (2015) 359

De Sousa, J.P. et al. (2018)
«The Self-Assembling Peptide P11-4 Prevents Collagen Proteolysis in Dentin» J Dent Res

Doberdoli, D., et al (2019)
«Efficacy of Self-assembling Peptide P11-4 with Fluoride Varnish or Self-assembling Peptide Matrix for the Treatment of Early Occlusal Carious Lesions” Oral Presentation 0368 at IADR 2019, Vancouver, Canada

Expert Round Table

Expert Round Table (2015)
«Biologische Schmelzregeneration ist Guided Enamel Regeneration» Dental Journal CH (02/15): 60


Felton, S. (2005)
«Self Assembling b-sheet Peptide Networks as Smart Scaffolds for Tissue Engineering.» Chemistry. Leeds, University of Leeds. PhD: 184.


Godenzi, D. (2018)
“Give Teeth a Chance: Curodont Repair in daily practice” Lecture at EAPD, Lugano Switzerland


Hug, M. (2013)
«Biomimetic Mineralization – Novel Strategies for Hard Tissue Regeneration in Dentistry.» Swiss Nano Convention. Congress Center Basel18


Jablonski-Momeni, A. Heinzel-Gutenbrunner, M.(2014)
«Efficacy of the self-assembling peptide P11-4 in constructing a remineralization scaffold on artificially-induced enamel lesions on smooth surfaces» J Orofac Orthop May;75(3):175-90.

Jablonski-Momeni, A., et al. (2019)
«Randomised in situ clinical trial investigating self-assembling peptide matrix P11-4 in the prevention of artificial caries lesions» Scientific Reports volume 9, Article number: 269

Jablonski-Momeni, A., et al. (2020)
«Impact of self-assembling peptides in remineralisation of artificial early enamel lesions adjacent to orthodontic brackets» Sci Rep 10, 15132 (2020)

Kamal, Kind, Kirkham, Knaup, Kobeissi, Koch, Kunzelmann, Kyle

Kamal, D. et al (2018)
«Comparative evaluation of remineralizing efficacy of biomimetic self-assembling peptide on artificially induced enamel lesions: An in vitro study» J Conserv Dent 2018;21:536-41

Kamal, D., et al (2017)
«Comparative Evaluation of Remineralizing Efficacy of Biomimetic Self-Assembling Peptide on Artificially Induced Enamel Lesions» Caries Res 51: 359, DOI: 10.1159/000471777

Kind, L., A. Wuethrich, et al. (2013)
«A self-assembling peptide with the potential of non-invasive regeneration of early caries lesion.» Clin Oral Investig 17(3)

Kind, L. et al (2017)
«Biomimetic Remineralization of Carious Lesions by Self-Assembling Peptide.» J Dent Res (Online First), DOI: 10.1177/0022034517698419

Kirkham, J. (2013)
«Filling without Drilling: A Biomimetic approach to dental tissue regeneration and repair.» British Society of Restorative Dentistry Spring Meeting, Manchester

Kirkham, J., A. Firth, et al. (2007)
«Self-assembling peptide scaffolds promote enamel remineralization.» J Dent Res 86(5): 426-430.

Knaup, T., et al (2020)
«Effect of the caries-protective self-assembling peptide P11-4 on shear bond strength of metal brackets.» J Orofac Orthop

Kobeissi, R. et al (2020)
“Effectiveness of Self-assembling Peptide P11-4 Compared to Tricalcium Phosphate Fluoride Varnish in Remineralization of White Spot Lesions: A Clinical Randomized Trial.” Int J Clin Pediatr Dent. 2020;13(5):451-456. doi:10.5005/jp-journals-10005-1804

Koch, F., et al (2018)
«Mechanical characteristics of beta sheet forming peptide hydrogels are dependent on peptide sequence, concentration and buffer composition» R.Soc Open Sci 5: 171562

Koch, F., et al (2018)
«Amino acid composition of nanofibrillar self-assembling peptide hydrogels affects responses of periodontal tissue cells in vitro» Int J Nanomedicine 2018:13

Koch, F., et al (2019)
«A Versatile Biocompatible Antibiotic Delivery System Based on Self-Assembling Peptides with Antimicrobial and Regenerative Potential» Adv Healthc Mater 2019: e1900167

Koch, F. et al (2020)
«Development and application of a 3D periodontal in vitro model for the evaluation of fibrillar biomaterials.” BMC Oral Health

Kunzelmann, K.-H. et al. (2015)
«Working Mechanism of Tooth Whitening Based on Hydroxyapatite Suspended in a P11-4 Peptide Matrix», IADR, Boston

Kyle, S., A. Aggeli, et al. (2010)
«Recombinant self-assembling peptides as biomaterials for tissue engineering.» Biomaterials 31(36): 9395-9405.

Kyle, S., A. Aggeli, et al. (2008)
«The self assembling peptide, P11-4 for a scaffold in regenerative medicine.» Eur Cell and Materials 16(Suppl 3): 70

Kyle, S. (2010)
«Self-assembling peptides as scaffolds for tissue engineering.» Biological Sciences. Leeds, The University of Leeds. PhD: 360.


Lysek, D.A. et al (2016)
«Randomised Clinical Trial Evaluating a Novel Dentine Hypersensitivity Relieve Gel», AADR Los Angeles.

Mannaa, Maude, Meyer, Moreira, Müller

Mannaa, A., Krejci, I., et al. (2018)
«RCT Investigating the Efficacy of Self-Assembling Peptide for Early Caries»
Oral presentaion 0456 at the IDAR 2018 in London

Maude, S., D. E. Miles, et al. (2011)
«De novo designed positively charged tape-forming peptides: self-assembly and gelation in physiological solutions and their evaluation as 3D matrices for cell growth.» Soft Matter 7(18): 8085-8099.

Maude, S., L. R. Tai, et al. (2012)
«Peptide synthesis and self-assembly.» Top Curr Chem 310: 27-69.

Meyer, N. et al. (2016)
«In vitro periodontal ligament model to assess synthetic self- assembling peptides for regeneration.» BioInterfaces 2016, Zürich.

Meyer, N. et al. (2017)
«Three dimensional model of the human periodontal ligament to be used as a middle-throughput test system.» European Cells and Materials Vol. 33 Suppl. 2, 2017 (P313)

Moreira, KMS. et al (2021)
“Impact of biomineralization on resin/biomineralized dentin bond longevity in a minimally invasive approach: An “in vitro” 18-month follow-up” Dental Materials

Müller, P. et al. (2013)
«Evaluation of a tooth gel with Curolox® Technology as part of professional tooth-cleaning, with regards to patient satisfaction and the effects of hypersensitivity» (2013) Swiss Dental Hygienists Conference, Lausanne.

Patel, Philip, Porta, Ratzmann

Patel, S. et al (2016)
«In Vitro Assessment of a Novel Biomimetic-Regeneration of Early Caries Lesions», AADR Los Angeles

Porta, F., L. Kind, et al. (2013)
«In vitro Models for P11-4 Detection in Dental White Spots.» Swiss Nanoconvention 2013. Basel

Philip, N. (2018)
«State of the Art Enamel Remineralization Systems: The Next Frontier in Caries Management.» Caries Res 53: 284-295

Ratzmann, A. et al (2018).
«Evaluation von “Curodont Repair” in der Initialkariestherapie nach Mulitbracketbehandlung.» P18, 91. Jahresdatung der DGKFO, Bremen, Germany.

Saha, Savas, Scanlon, Schlee, Schmidlin, Sedlakova, Sezici, Silvertown, Soares, Stevanovic

Saha, S., et al. (2019)
«A biomimetic self-assembling peptide promotes bone regeneration in vivo: A rat cranial defect study» Bone 24 (127):602-611. doi:10.1016/j.bone.2019.06.020

Savas, S. et al (2016)
«Effects of Remineralization Agents on Artificial Carious Lesions» Pediatric Dentistry, Volume 38, Number 7, November 2016, pp. 511-518(8)

Scanlon, S., A. Aggeli, et al. (2009)
«Organisation of self-assembling peptide nanostructures into macroscopically ordered lamella-like layers by ice crystallisation.» Soft Matter 5: 1237-1247

Schlee, M., et al (2017)
«Clinical performance of self-assembling peptide P11-4 in the treatment of initial proximal carious lesions: A practice-based case series» J Invest Clin Dent. 2017;e12286.

Schlee, M., et al (2014)
«Clinical effect of biomimetic mineralization in approximal caries. Results of a clinical study after 6 months.» Stomatologie 111(2014): 175-181.

Schmidlin, P. et al (2016)
«In vitro re-hardening of artificial enamel caries lesions using enamel matrix proteins or self-assembling peptides.» J Appl Oral Sci 24(1), 31-6.

Sedlakova Kondelova, P., et al (2020)
«Efficacy of P11-4 for the treatment of initial buccal caries: a randomized clinical trial.»
Sci Rep 10, 20211 (2020).

Sezici, Y., et al. (2021)
“Comparative evaluation of fluoride varnishes, self-assembling peptide-based remineralization agent, and enamel matrix protein derivative on artificial enamel remineralization in vitro.” Prog Orthod. 22, 4 (2021).

Silvertown, J. et al (2017)
«Remineralization of natural early caries lesions in vitro by P11-4 monitored with photothermal radiometry and luminescence.» J Invest Clin Dent 00:e12257.doi:10.1111/jicd.12257.

Soares, R. et al (2017)
«Assessment of Enamel Remineralisation After Treatment with Four Different Remineralising Agents: A Scanning Electron Microscopy (SEM) Study» J Clin Diagn Res Vol-11(4): ZC136-ZC141

Stevanovic, S., L. Kind, et al. (2013)
«Bioceramic tooth model to study caries.» Clin Oral Investig 17(3)

Takahashi, Thomson

Takahashi, F. et al. (2016)
«Ultrasonic assessment of the effects of self-assembling peptide scaffolds on preventing enamel demineralization.» Acta Odontol Scand (74):(2016) 142-7.

Takahashi, H. et al (2016)
«Evaluation of Application of Peptide P11-4 on Remineralization of Enamel.» AADR Los Angeles.

Thomson, B.M. et al, (2014)
«P11-15 (NNRFEWEFENN): A biocompatible, self-assembling peptide with potential to promote enamel remineralisation. Abstract 47» Caries Res (48): (2014) 411

Üstün, Welk, Wilshaw

Üstün, N., et a.l (2019)
«Analysis of efficacy of the self-assembling peptide-based remineralization agent on artificial enamel lesions.» Microsc Res Tech DOI: 10.1002/jemt.23254.

Welk, A. et al (2020)
«Effect of self-assembling peptide P11-4 on orthodontic treatment-induced carious lesions.» Scientific Rep

Wilshaw, S. P., A. Aggeli, et al. (2008)
«In vivo assessment of the immunogenicity of self-assembling peptides for use in regenerative applications.» Eur Cell and Materials 16(Suppl 3): 97.




Have we piqued your interest?