Innovation & Science

Die Natur zum VorbildCUROLOX® TECHNOLOGYScientific NetworkLiteratur

Die Natur zum Vorbild

credentis geht neue Wege um Zähne gesund zu erhalten und zu schützen. Bei der Odontogenese ermöglicht die dreidimensionale Ame­logenin-Matrix die Kristallisation und ein geordnetes Kristallwachstum von Calci­umphosphat.

Diese Matrix diente bei der Entwicklung der CUROLOX® TECHNOLOGY als Vor­bild. Wissenschaftler der Universität Leeds fanden ein aus natürlich vorkommenden Amino­säuren gebildetes Peptid (P11-4), welches eine analoge Matrix bildet.

Schmelzentwicklung während der Odontogenese
Peptid-Matrix

CUROLOX® TECHNOLOGY

Die CUROLOX® TECHNOLOGY steht für die intelligenten Matrix-bildenden Eiweissmoleküle. Das Peptid (P11-4) besitzt eine hohe Plastizität und Affinität: Es kann lokal gezielt zur Bildung einer dreidimensionalen Biomatrix gebracht werden und besitzt als Matrix eine hohe Affinität zu Hydroxylapatit.

Die Plastizität und Affinität ermöglichen vielseitige Anwendungen. Innerhalb einer Läsion dient die dreidimensionale Matrix als Kristallisationskeim für neue Hydroxylapatit-Kristalle und als Gerüst für neuen Schmelz.

Als stabile, dreidimensionale Matrix in Zahngelen bewirkt die hohe Affinität zum Calciumphosphat die gute Anhaftung auf Zahnschmelz und Dentin. Eine solche Schutzbarriere auf dem Dentin deckt schnell offene Dentintubuli ab und desensibilisiert schmerzempfindliche Zähne. Zusammen mit optimierten Zusätzen wie Fluorid und Calciumionen bildet sie eine Erosionsschutzschicht auf dem Schmelz.

Zusätzliche Möglichkeiten ergeben sich durch die Bindung funktioneller Stoffe an die CUROLOX Matrix. Mit farbgebenden Partikeln kann ein Whitening-Effekt erreicht werden.

P11-4: Predicted binding of calcium ions to CUROLOX® surfaces
P11-4: Predicted binding of calcium ions to CUROLOX® surfaces

Scientific Network

Wissenschaft braucht starke Partner. credentis kann auf ein universitäres Netzwerk zählen und steht im konstanten Wissensaustausch mit führenden Instituten der Zahnmedizin in Europa und in den USA.

Literatur

Mehr als 20 Jahr Forschung! Die CUROLOX® TECHNOLOGY wurde in verschiedenen Universitäten eingehend erforscht. Von in vitro Studien zur Wirkungsweise der CUROLOX® TECHNOLOGY bis zu Gold-Standard kontrollierten klinischen Studien wurden viele Aspekte der einzigartigen Technik untersucht – und weitere werden folgen.

Aggeli, Alkilzy

Aggeli, A., M. Bell, et al. (1997)
«Responsive gels formed by the spontaneous self-assembly of peptides into polymeric beta-sheet tapes.» Nature 386(6622): 259-262.

Aggeli, A., M. Bell, et al. (2003)
«pH as a trigger of peptide beta-sheet self-assembly and reversible switching between nematic and isotropic phases.» J Am Chem Soc 125(32): 9619-9628.

Aggeli, A., N. Boden, et al. (2001)
«Self-assembling peptide systems in biology, medicine, and engineering.» Dordrecht ; Boston, Kluwer Academic Publishers.

Aggeli, A., I. A. Nyrkova, et al. (2001)
«Hierarchical self-assembly of chiral rod-like molecules as a model for peptide beta -sheet tapes, ribbons, fibrils, and fibers.» Proc Natl Acad Sci U S A 98(21): 11857-11862.

Alkilzy, M. et al, (2015)
«Efficacy, Clinical Applicability and Safety, of CurodontTM Repair in Children with Early Occlusal Caries. Abstract 30» Caries Res (49): (2015) 311

Alkilzy, M. et al, (2014)
«Safety, Clinical Applicability and Effect of Curodont™ Repair in Children with Early Occlusal Caries. Abstract 61» Caries Res (48): (2014) 411

Bell, Bommer, Bröseler, Brigi, Brubaker, Brunton

Bell, C. J., L. M. Carrick, et al. (2006)
«Self-assembling peptides as injectable lubricants for osteoarthritis.» J Biomed Mater Res A 78(2): 236-246.

Bommer, C. et al. (2016)
«Tooth-Whitening Effect of a Curolox-Technology based Investigational Product», AADR Los Angeles

Bröseler, F., Tietmann, C. et al. (2013)
«Effect of Curodont REPAIR in patients with buccal carious lesions: a mono-centre, single-blinded, randomised, controlled, split-mouth study – intermediate report.» Clin Oral Invest 17(2013): 1055

Brigi, C. (2014)
«In vitro measurement of dental  remineralisation: investigating a biomimetic self-assembling peptide treatment strategy» Master Thesis, Queen Mary, University of London.

Brubaker, L. et al. (2016)
«Remineralization of Early-Enamel lesions Using Biomimetic Regeneration Combined With Fluoride-toothpaste», AADR Los Angeles

Brunton, P.A., R. P. W. Davies, et al. (2013)
«Treatment of early caries lesions using biomimetic self-assembling-peptides – a clinical safety trial.» Brit Dent J: 215, E6, doi:10.1038/sj.bdj.2013.741.

Brunton P.A.,  R.P.W. Davies et al. (2012)
«Self-assembling peptides to support remineralisation of Tooth lesions – a biomimetic apprach.» ICNARA2, Chile.

Ceci, Chen

Ceci, M. et al (2015)
«Effect of self-assembling peptide P -4 on enamel erosion: AFM and SEM studies» Scanning

Chen X. et al, (2014)
«In vitro Evaluation of Dentine Remineralisation by a Self-Assembling Peptide Using Scanning Electron Microscopy. Abstract 40» Caries Res (48): (2014) 402

Chen X. et al, (2014)
«Dentine Tubule Occlusion of a Novel Self-assembling Peptide Containing Gel» (2014) IADR, Cape Town

Davies

Davies, R. P. W., A. Aggeli, et al. (2009)
«Mechanisms and Principles of 1D Self-Assembly of Peptides into [beta]-Sheet Tapes.» Advances in Chemical Engineering. J. K. Rudy, Academic Press. Volume 35: 11-43.

Davies, R.P.W. et al (2014)
«Novel Self-Assembling Peptides, for the Treatment of Early Caries Lesions» Caries Res (48): (2014) 404

Davies, R.P.W. et al (2015)
«Treatment of Fabricated Caries Lesions; Self-assembling Peptides vs. Fluoride» Caries Res (49): (2015) 359

Expert Round Table

Expert Round Table (2015)
«Biologische Schmelzregeneration ist Guided Enamel Regeneration» Dental Journal CH (02/15): 60

Felton

Felton, S. (2005)
«Self Assembling b-sheet Peptide Networks as Smart Scaffolds for Tissue Engineering.» Chemistry. Leeds, University of Leeds. PhD: 184.

Hug

Hug, M. (2013)
«Biomimetic Mineralization – Novel Strategies for Hard Tissue Regeneration in Dentistry.» Swiss Nano Convention. Congress Center Basel18

Jablonski-Momeni

Jablonski-Momeni, A. Heinzel-Gutenbrunner, M.(2014)
«Efficacy of the self-assembling peptide P11-4 in constructing a remineralization scaffold on artificially-induced enamel lesions on smooth surfaces» J Orofac Orthop May;75(3):175-90.

Kind, Kirkham, Kunzelmann, Kyle

Kind, L., A. Wuethrich, et al. (2013)
«A self-assembling peptide with the potential of non-invasive regeneration of early caries lesion.» Clin Oral Investig 17(3)

Kind, L., et al (2014)
«Comparing remineralization of natural and artificial carious lesions in human teeth.» Spie Smart Structure /NDE San Diego

Kind, L., et al (2014)
«A Self-Assembling Peptide with the Potential of Non-Invasive Regeneration of Early Caries Lesions.» Int Poster J Dent Oral Med: Poster 747 (IPJ-Preis 2015)

Kind, L. et al (2017) „Biomimetic Remineralization of Carious Lesions by Self-Assembling Peptide.“ J Dent Res (Online First), DOI: 10.1177/0022034517698419

Kirkham, J. (2013)
«Filling without Drilling: A Biomimetic approach to dental tissue regeneration and repair.» British Society of Restorative Dentistry Spring Meeting, Manchester

Kirkham, J., A. Firth, et al. (2007)
«Self-assembling peptide scaffolds promote enamel remineralization.» J Dent Res 86(5): 426-430.

Kunzelmann, K.-H. et al. (2015)
«Working Mechanism of Tooth Whitening Based on Hydroxyapatite Suspended in a P11-4 Peptide Matrix», IADR, Boston

Kyle, S., A. Aggeli, et al. (2010)
«Recombinant self-assembling peptides as biomaterials for tissue engineering.» Biomaterials 31(36): 9395-9405.

Kyle, S., A. Aggeli, et al. (2008)
«The self assembling peptide, P11-4 for a scaffold in regenerative medicine.» Eur Cell and Materials 16(Suppl 3): 70

Kyle, S. (2010)
«Self-assembling peptides as scaffolds for tissue engineering.» Biological Sciences. Leeds, The University of Leeds. PhD: 360.

Lysek

Lysek, D.A. et al (2016)
«Randomised Clinical Trial Evaluating a Novel Dentine Hypersensitivity Relieve Gel», AADR Los Angeles.

Maude, Meyer, Müller

Maude, S., D. E. Miles, et al. (2011)
«De novo designed positively charged tape-forming peptides: self-assembly and gelation in physiological solutions and their evaluation as 3D matrices for cell growth.» Soft Matter 7(18): 8085-8099.

Maude, S., L. R. Tai, et al. (2012)
«Peptide synthesis and self-assembly.» Top Curr Chem 310: 27-69.

Meyer, N. et al. (2016)
«Self- Assembling Peptides As Novel Treatment Strategy To Regenerate Periodontal Ligament.» Swiss Medtech Day 2016, Bern

Meyer, N. et al. (2016)
«In vitro periodontal ligament model to assess synthetic self- assembling peptides for regeneration.» BioInterfaces 2016, Zürich.

Müller, P. et al. (2013)
«Evaluation of a tooth gel with Curolox® Technology as part of professional tooth-cleaning, with regards to patient satisfaction and the effects of hypersensitivity» (2013) Swiss Dental Hygienists Conference, Lausanne.

Patel, Porta

Patel, S. et al (2016)
«In Vitro Assessment of a Novel Biomimetic-Regeneration of Early Caries Lesions», AADR Los Angeles

Porta, F., L. Kind, et al. (2013)
«In vitro Models for P11-4 Detection in Dental White Spots.» Swiss Nanoconvention 2013. Basel

Scanlon, Schlee, Schmidlin, Silvertown, Soares, Stevanovic

Scanlon, S., A. Aggeli, et al. (2009)
«Organisation of self-assembling peptide nanostructures into macroscopically ordered lamella-like layers by ice crystallisation.» Soft Matter 5: 1237-1247

Schlee, M., et al (2014)
«Clinical effect of biomimetic mineralization in approximal caries. Results of a clinical study after 6 months.» Stomatologie 111(2014): 175-181.

Schlee, M., Rathe, F., et. al. (2013)
«Effect of Curodont REPAIR in patients with proximal carious lesions: uncontrolled, non-interventional study – interim report.» Clin Oral Invest 17(2013): 1046-1047

Schmidlin, P. et al (2016)
«In vitro re-hardening of artificial enamel caries lesions using enamel matrix proteins or self-assembling peptides.» J Appl Oral Sci 24(1), 31-6.

Silvertown, J. et al (2017)
«Remineralization of natural early caries lesions in vitro by P11-4 monitored with photothermal radiometry and luminescence.» J Invest Clin Dent 00:e12257.doi:10.1111/jicd.12257.

Soares, R. et al (2017)
«Assessment of Enamel Remineralisation After Treatment with Four Different Remineralising Agents: A Scanning Electron Microscopy (SEM) Study» J Clin Diagn Res Vol-11(4): ZC136-ZC141

Stevanovic, S., L. Kind, et al. (2013)
«Bioceramic tooth model to study caries.» Clin Oral Investig 17(3)

Stevanovic, S., L. Kind, et al. (2013)
«Remineralizationof carious lesions by self assembled peptide supramolecularnetworks and Hydroxyapatite nanocrystals.» Swiss Nano Convention 2013. Basel

Stevanovic, S., L. Kind, et al. (2013)
«Reminerlisation of carious lesions by self-assembling peptide supramolecular networks. 19th Swiss Conference on Biomaterials.» Davos, Switzerland, Swiss Society of Biomaterials.

Takahashi, Thomson

Takahashi, F. et al. (2016)
«Ultrasonic assessment of the effects of self-assembling peptide scaffolds on preventing enamel demineralization.» Acta Odontol Scand (74):(2016) 142-7.

Takahashi, H. et al (2016)
«Evaluation of Application of Peptide P11-4 on Remineralization of Enamel.» AADR Los Angeles.

Thomson, B.M. et al, (2014)
«P11-15 (NNRFEWEFENN): A biocompatible, self-assembling peptide with potential to promote enamel remineralisation. Abstract 47» Caries Res (48): (2014) 411

Wilshaw, Wong

Wilshaw, S. P., A. Aggeli, et al. (2008)
«In vivo assessment of the immunogenicity of self-assembling peptides for use in regenerative applications.» Eur Cell and Materials 16(Suppl 3): 97.

Wong, B., Silvertown, J.D., et al (2014)
«Detection of remineralization of early caries with the Canary System». AADR. Charlotte, USA.

Wong, B. et al (2014)
«In vitro Detection of Remineralisation of Early Caries Using Curodont Repair and The Canary System™. Abstract 52». Caries Res (48): (2014) 408.

Haben wir Ihr Interesse geweckt?